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This paper deals with vibrations of parametrically excited non-linear systems
with one degree of freedom. The non-linearity is cubic and is of the same order as
the linear terms. The parametric vibrations are excited by a periodical force of
Jacobi elliptic type. The mathematical model of the system is a special type of
non-linear Hill's equation. The analytical approximate solution of the equation is
obtained applying the elliptic-Krylov}Bogolubov method (method of variable
phase and amplitude) developed for strong non-linear di!erential equation of
Du$ng type. It enables the regions of unbounded solution to be de"ned
approximately. The parameters of a dynamic absorber which transforms the
motion to regular are calculated in this paper.

( 2000 Academic Press
1. INTRODUCTION

The problem of parametrically excited systems has been known for a long time.
A signi"cant number of papers have been published concerning the problem. All
the papers can be divided into two main groups: the "rst, in which the motion and
the boundary between stable and unstable solutions are de"ned, and the second, in
which the methods for transforming motion to regular one are considered. It is
impossible to "nd the closed-form solution of the parametrically excited system
described with a linear second order di!erential equation with periodical time
variable coe$cients. Many approximate analytical and numerical methods have
been developed (see references [1}5]). For all of them it is common that they tend
to de"ne the regions of stable and unstable motion caused by parametrical
resonance. The transverse motion of a straight beam with a uniform cross-section
loaded by an axial time-varying force is described with the second order non-linear
di!erential equation with time variable parameters [1, 2, 6}9]. For the case where
the non-linearity is small, perturbation methods such as the method of
Bogolubov}Mitropolski [1], the method of multiple scales [2], and the method of
normal forms [10] have been developed for solving the problems. In papers
[11}13], the parametrically excited pendulum has been considered. This pendulum
has been shown to exhibit equilibrium, oscillating, rotating and tumbling motions
which can be periodic or chaotic. It is shown that by using small perturbation on
the system, the chaotic behavior may be changed into regular motion which can
#exibly be chosen from a variety of unstable periodic orbits with di!erent desired
responses.
0022-460X/00/020245#27 $35.00/0 ( 2000 Academic Press
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In this paper, parametrically excited strong non-linear cubic system is
considered. The parameter variation is formulated by a Jacobi elliptic function. For
solving the equation, the elliptic-Krylov}Bogolubov method is applied. The
approximate procedure is suggested for obtaining the regions of bounded and
unbounded solutions. In this paper, the method for transforming the unbounded
motion to a periodic one by applying a dynamic absorber is shown. The parameters
of the linear dynamic absorber are de"ned.

2. PARAMETRIC RESONANCE*NON-LINEAR CASE

The mathematical model of a strong non-linear parametrically excited system is
a non-linear di!erential equation with periodic coe$cient

yK
1
#[d!eF(t)]y

1
!c*

3
y3
1
"0, (1)

where c*
3

is the coe$cient of non-linear term, d and e are constants and
(
G
)"d2/dt2. Equation (1) is the non-linear Hill's equation.
For the case where the periodic function is the sinus Jacobi elliptic function and

the amplitude of excitation is F
0

it is

F (t)"F
0
sn(Xt, k2), (2)

where X is the frequency of excitation and k is the modulus of the elliptic function.
The Hill's equation (1) has the form
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where

e*"eF
0
, u2"d, h"e*/u2. (4)

Equation (3) describes the parametric-excited vibrations.
Let us assume that the parameter h is small. Then the elliptic-Krylov}Bogolubov

procedure developed for strong non-linear di!erential equations [14}18] can be
applied. It represents an analytical approximate procedure based on the
perturbation of the solution of the strong non-linear di!erential equation. For
h"0, equation (3) is transformed to the strong non-linear di!erential equation with
cubic non-linearity of Du$ng type. The well-known solution is
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and A and h are constants determined by the initial conditions.
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For the resonant case

X
1
+

X
2

, k+k
1
, (7)

the trial solution of equation (3) is the same as the form of its generating solution (5).
The trial solution is given by equation (3) but with A and h now time dependent

y
1
"A(t) sn(t, k2), (8)

where

t"

Xt
2
#h(t). (9)

The task of "nding the solution of y
1

is transformed into "nding two functions A(t)
and h(t). The assumed solution has to satisfy the constraint that the time derivative
of the trial solution must have the same form as the time derivative of the
generating solution

yR
1
"A

X
2

cn(t, k2) dn(t, k2). (10)

Di!erentiating equation (8) with respect to t and using relation (10) one has

A sn(t, k2)#hQ cn(t, k2) dn(t, k2)"0. (11)

Di!erentiating equation (10), and substituting the results into equation (3) one gets

A
X
2

cn(t, k2) dn(t, k2)!A
X
2

hQ sn(t, k2) [1!2k2 sn2 (t, k2)#k2]

"hu2A sn(t, k2) sn[2(t!h), k2]. (12)

The sn function with double argument is (see reference [19])

sn[2(t!h), k2]"2
sn[(t!h), k2] cn[(t!h), k2] dn[(t!h), k2]

1!k2 sn4[(t!h), k2]

"2
1!k2 sn2t sn2 h

(1!k2 sn2t sn2 h)4!k2 snt cn h dn h!cntdnt sn h)4

](snt cnhdnh!cntdnt sn h) (cnt cnh#sntdnt snhdn h)

](dntdn h#k2 sn t cnt sn h cn h). (13)
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Substituting equations (11) and (13) into equation (12), two "rst order di!erential
equations are obtained:

AhQ (1!k2 sn4t) i"!

2
X

bhu2 A sn t2, (14)

AQ (1!k2 sn4t) i"
2
X

bhu2 A snt cnt dnt, (15)

i.e.,
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i
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b
i
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where
sn t,sn(t, k2), sn h,sn(h, k2),

cnt,cn(t, k2), cn h,cn(h, k2),

dnt,dn(t, k2), dn h,dn(h, k2),

b"snt cntdnt cn2 hdn2 h#k2 sn3t cntdn3t sn4 hdn2 h

!k4 sn5t cn tdnt cn2 hdn2 h sn4 h!k2 snt cn3t dnt sn2 h cn2 h

#k4 sn3t cn3 tdnt sn4 h cn2 h!snt cnt dn3t sn2 h dn2 h

#k2 sn2t cn2 t cn3 h dn h sn h#sn2tdn2t cn h dn3 h sn h

!k2 sn4tdn2t cn hdn3 h sn3 h!cn2tdn2t sn h cnh dn h

#k4 sn4t cn2 tdn2t sn5 h dn h cn h!k4 sn4t cn2t cn3 hdn h sn3 h,
and

i"1!4k2 sn2t sn2 h!4k6 sn6t sn6 h#k8 sn8t sn8 h!k2 sn4t cn4 h dn4 h

#6k4 sn4t sn4 h!k2 cn4 tdn4t sn4 h!6k2 sn2t cn2t dn2t sn2 h cn2 h dn2 h

#4k2 sn3t cn tdnt cn8 h dn3 h sn h#4k2 snt cn3tdn3t cn hdn h sn3 h.

The task of obtaining solution y
1

of equation (3) is transformed into equivalent
one of obtaining two solutions A(t) and h (t) of the system of equation (16) and (17).
It is not possible to "nd the solutions of the equations (16) and (17) in the closed



VIBRATIONS IN A PARAMETRICALLY EXCITED SYSTEM 249
form. As the elliptic functions are periodical with period 4K, where K is the total
elliptical integral of the "rst kind, the averaging process suggested by Yuste and
Bejarano [18] is applied:

hQ "AX1
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2
X

hu2

4K P
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dt, (18)
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b
i
dt. (19)

The averaging procedure is shown in the Appendix A.
To prove the exactness of the procedure the linear system as a special case will be

considered.

2.1. LINEAR CASE

For the linear case

k"0, cn"cos, sn"sin, dn"1, K(0)"
n
2

.

Equations (16) and (17) are transformed to

hQ "!

2
X
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1
2n P

2n

0

(sin4t"sin2t cos2t) dt,
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4
X
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1
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0
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i.e.,

hQ "Au!

X
2B!

hu2

2X
sin 2h, (20)

AQ "
hu2A
2X

cos 2h. (21)

These equations are the same as those obtained in reference [1]. It also proves the
correctness of the method discussed in this paper as well as its generality.

3. BOUNDED AND UNBOUNDED SOLUTIONS

For parametrically excited vibrations it is evident that small excitation may
produce large response. It is of special interest to separate the regions of stable and
unstable motion. The aim of this section is to de"ne approximately the "rst
unstable region.



250 L. CVETICANIN
Consider equations (14) and (15). Averaging separately the left- and the
right-hand sides of the equations gives
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i (1!k2 sn4t dt)"(1!k2 sn4 h) P
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](1!2k2 sn2 h#k2 sn2t sn2 h)
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0
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#k2 sn2t sn2 h(1!k2 sn4h) [dn 2h#1]N dt.

Then equations (14) and (15) transform to
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0
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"

2
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1
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For the case where the vibrations are small, only the "rst terms of the equation are
considered. Then, the simpli"ed equations (24) and (25) are
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with E being the total elliptic integral of the second kind. Equations (26) and (27)
are transformed by introducing two new variables

x"A sn h, y"A cn h dn h. (29)

The amplitude A and phase h are calculated from equation (29):

A2"
y2#(1#k2)x2$J[y2#(1#k2)x2]2!4k2x4

2
, (30)

h"sn~1 A
x
A

, k2B . (31)

Substituting equations (26) and (27) into equation (29) gives

xR "p[2!(3#k2) sn2 h#2k2 sn4 h]x#AX1
!

X
2B y, (32)

yR "py[1!sn2 (3#k2!3k2 sn2 h]!x[1#k2!k2 sn2 h] AX1
!

X
2B . (33)

Linearizing relations (32) and (33) gives
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!

X
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!

X
2B , (35)

where
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X
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A

4
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The properties of the solutions of the system of equations (34) and (35) depend on
the solutions of the characteristic equation

K
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The characteristic exponents are
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The solution of the equations are
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1
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2
ej2t, (39)
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ej2t , (40)

where C
1

and C
2

are arbitrary constants. The amplitude of vibrations is bounded
and stable with time if the real value of j or real part j is zero or negative. It is
satis"ed for

p)0, p2!4 AX1
!

X
2B

2
(1#k2))0. (41)

When the real part of j is positive de"nite, the amplitude of vibrations A is
unbounded and the motion is unstable in time. The conditions of instability are

p'0, p'K 2AX1
!

X
2BJ1#k2 K . (42)

The "rst condition is satis"ed for the case where the modulus of elliptic function is

0(k2(0)63. (43)

Using equation (36), relation (42) becomes
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4
'K AX1

!

X
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It means that if the frequency of excitation is in the interval
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X
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1
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X
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4K
A

4
, (45)

the amplitude of vibration increases. Relation (45) de"nes approximately one of the
regions of instability. It not only depends on the properties of the system, but also
on the initial amplitude.

Introducing the dimensionless parameters

u*"
2u
X

, X*"1!
c*2
3

A2

2u2
, (46)

the boundaries of the unstable regions are described as

u*JX*"1$
h

J1#k2

1!k2

8KX*
A

4
. (47)



Figure 1. h}u* diagrams for k2"0)5 and various values of X*.

Figure 2. h}u* diagrams for X*"1 and various values of k2.
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As seen, the boundaries depend on the initial amplitude, and on the excitation
parameters: frequency and modulus of the Jacobi elliptic function. In Figure 1 the
in#uence of X* is shown for k2"0)5. It is concluded that the parameter X* has an
in#uence on the width of the unstable region: the higher the values of X* the
narrower the unstable district. It has also an e!ect on the position of the unstable
region.

In Figure 2, the h!u* diagram is plotted for various values of k2. It can be seen
that the region of instability is a function of the modulus k2 of the excitation
function: the higher the value of the modulus the narrower the region.



Figure 3(a). h}u* diagram for X*"0)955. Figure 3(b). y
1
}t diagram for point I.

Figure 3(c). y
1
}t diagram for point II. Figure 3(d). y

1
}t diagram for point III.

VIBRATIONS IN A PARAMETRICALLY EXCITED SYSTEM 255
3.1. EXAMPLE

To verify the accuracy of the analytical method and its result (equation (47))
a comparison is made with numerical solutions of equation (3). Consider the system
where

u2"1, c*
3
"1, k2"1/2.

For initial conditions A"0)3 and h"K"1)854072, X*"0)955. Using the
analytical solution (47) the stable and unstable regions are plotted in Figure 3(a).
Three points are selected. Point 1 has the parameters X"J2 and h"0)5. The
co-ordinates of point II are X"2 and h"0)5. Point III has the same value of
X and h"1)3. Applying the Runge}Kutta numerical procedure the solutions of
equation (3) for these three sets of parameters are obtained. In Figure 3(b) the
time-history diagram for point I is plotted. The motion is periodical and is in the
stable region. In Figure 3(c) the displacement}time diagram for point II is plotted.
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The curve has a tendency to diverge. The motion is in the unstable region. The
time-history diagram for the parameters which correspond to point III is plotted in
Figure 3(d). The motion is unstable. It has a tendency to increase. Discussing the
results in Figure 3 it can be concluded that the regions of stability obtained
analytically (Figure 3(a)) in the "rst approximation correspond to the real
boundaries obtained numerically (Figures 3(b) and 3(c)) only for the case where the
parameter h)1. For h'1 the analytical results are incorrect (Figure 3(d)).
According to equation (4) it means that the analytical solving method is applicable
only for e*)d.

4. EXACT SOLUTION

For equation (3) the exact solution can be obtained. Assume the solution in the
form of the second order approximation as suggested in reference [20],

y
1
"A#B sn(Xt, k2), (48)

where A and B are constants which have to be determined. This solution is in some
sense a second order approximation. The time derivatives of equation (48) are

yR
1
"BX cn dn,

yK
1
"!BX2 sn(1#k2!2k2 sn2),

where
sn,sn(Xt, k2), cn,cn(Xt, k2), dn,dn(Xt, k2).

Substituting equation (48) into equation (3) gives

!BX2 sn(1#k2!2k2 sn2)#u2(A#B sn)!u2h(A sn#B sn2).

!c*
3
(A3#3A2B sn#3AB2 sn2#B3 sn3)"0. (49)

Separating the terms with the same order of function sn one obtains

!u2#c*
3
A2"0, (50)

!BX2(1#k2)#u2B!u2hA!3c*
3
A2B"0, (51)

u2h#3c*
3
AB"0, (52)

!2k2X2#c*
3
B2"0, (53)

where

B"

uh

3Jc*
3

, A"S
u2

c*
3

,
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k"
h

J18!h2
, X"uS1!

h2

18
. (54)

It means that for the case where the excitation force is

F"F
0
snAutS1!

h2

18
,

h2

18!h2B , (55)

the solution of equation (3) is

y
1
"S

u2

c*
3

#

uh

3Jc*
3

snAutS1!
h2

18
,

h2

18!h2B . (56)

5. VIBRATIONS OF THE SYSTEM WITH LINEAR ABSORBER

As shown in section 3, depending on the excitation parameter X, the motion of
the system (3) is stable or unstable. If the motion is unstable for a certain value of
X one requires to turn it into a stable motion. The stabilization of the motion and
the increasing of the region of stability is possible by adding a linear dynamic
absorber to the aforementioned system (Figure 4). It is a mass}spring system. The
Figure 4. The system with linear absorber.
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parameters of the absorber are the mass m
a
and the rigidity of a spring k

a
. For the

special values of absorber parameters the motion of the system had to be periodical.
The aim of the paper is to determine the values of the parameters of the absorber
which stabilizes the motion of the basic system.

The di!erential equation of motion of the basic system with absorber is

yK
1
#[d!eF(t)]y

1
!c*

3
y3
1
#ma

a
(y

1
!y

3
)"0, (57)

yK
3
#a

a
(y

3
!y

1
)"0, (58)

where y
1

and y
3

are the de#ection functions of the masses,

a
a
"

k
a

m
a

, m"

m
a

m
0

, (59)

with m
0

being the mass of the vibrating system. The initial conditions are

y
1
(0)"y

10
, yR

1
(0)"yR

10
, y

3
(0)"y

30
, yR

3
(0)"yR

30
. (60)

Eliminating y
3

from equation (57), gives

y
3
"

1
ma

a

MyK
1
#[d!eF(t)]y

1
!c*

3
y3
1
#ma

a
y
1
N , (61)

and substituting into equation (58) gives

yIV
1
#[d!eF(t)]yK

1
!eFG y

1
!2eyR

1
FQ !3c*

3
y
1
(2yR 2

1
#y

1
yK
1
)

#ma
a
yK
1
#a

a
MyK

1
#[d!eF(t)]y

1
!c*

3
y3
1
N"0. (62)

According to equations (60) and (61) the initial conditions are

y
1
(0)"y

10
, yR

1
(0)"yR

10
,

yK
1
(0)"ma

a
(y

30
!y

10
)![d!eF(0)]y

10
#c*

3
y3
10

,

>>>y
1
(0)&ma

a
(yR

30
!yR

10
)![d!eF(0)]yR

10
#eFQ (0)y

10
#3c*

3
y2
10

yR
10

. (63)

Now assume the excitation function (2). The sinus Jacobi elliptic function is shown
as a series of trignometric function (see reference [19])

sn(Xt, k2)"
2n
kK

=
+
n/0

enK{(n`1)@2K

1!e~nK{(2n`1)@K
sin

n (2n#1)Xt
2K

, (64)
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where K"K(k2)"K@(1!k2). Assuming only the "rst term and developing it into
a Taylor series gives

sn(Xt, k2)+a(1!b cos 2XK t), (65)
where

XK "
nX
2K

, a"
nJ2
kK

e~nK{@2K

1!e~nK{@K
, b"

1
2

. (66)

The excitation function (2) transforms to

F(t)"F
0
a(1!b cos 2XK t). (67)

According to equation (67) equation (62) is

yIV
1
#[d#(m#1)a

a
!e*a (1!b cos 2XK t)]yK

1

#y
1
[a

a
d!e*aa

a
#abe*(a

a
!4XK 2) cos 2XK t]

!4e*abX
1
yR
1
sin 2X

1
t!3c*

3
y
1
(2yR 2

1
#y

1
yK
1
)!a

a
c*
3
y3
1

"0, (68)

and the initial conditions (63) are

y
1
(0)"y

10
, yR

1
(0)"yR

10
,

yK
1
(0)"ma

a
(y

30
!y

10
)![d!e*a(1!b)]y

10
#c*

3
y3
10

,

>>>y
1
(0)"ma

a
(yR

30
!yR

10
)![d!e*a(1!b)]yR

10
#3c*

3
y2
10

yR
10

. (69)

where
e*"eF

0
. (70)

Now assume the solution of equation (68) as

y
1
"A cosXK t. (71)

If equation (71) is substituted into equation (68), one obtains

XK 4![d#(m#1)a
a
!e*a#e*ab (2 cos2XK t!1]XK 2

#[!a
a
ae*#abe* (a

a
!4XK 2) 2 cos2XK t!1)]

#8abe*XK 2 (1!cos2XK t)!3c*
3
A2XK 2 (2!3 cos2XK t)

!a
a
c*
3
A2 cos2XK t

"0. (72)



260 L. CVETICANIN
Separating the terms with cos and cos3 yields a system of two algebraic equations

XK 4![d#(m#1)a
a
!e*a(1#b)]XK 2!e*a[a

a
#b (a

a
!4XK 2)]

#8e*abXK 2!6c*
3
A2XK 2

"0 (73)

and

!18XK 2e*ab#2e*ab(a
a
!4XK 2)!a

a
c*
3
A2#9c*

3
A2XK 2"0. (74)

From equation (74), one obtains the parameter of the absorber

a
a
"9XK 2. (75)

From equation (73) the parameter of the mass ratio is

m"

1
9XK 2

(8d!8XK 2!7ae*!6c*
3
A2). (76)

The parameter a
a

of the absorber depends on the frequency of parametric
excitation. The mass ratio is a function of the excitation coe$cients and the
parameters of the primary system.

The in#uence of the linear absorber on the vibrations of the system is shown in
Figure 5. In Figure 5(a), the y

1
!t diagram for XK "0)5, e*"0)5, d"0)54,

a"0)21727, c*
3
"1 is plotted. The motion is unstable. In Figure 5(b), the y

1N
!t

and y
1A

!t diagrams of the system with the linear absorber whose parameters are
a
a
"2)25 and m"0)3 are plotted. Equations (57) and (58) for excitation (2) are
Figure 5(a) y
1
}t diagram for the basic system

without absorber.
Figure 5(b). Displacement}time diagrams for

the system with absorber obtained analytically
(y

1A
) and numerically (y

1N
).



Figure 6(a). A}m diagrams of the negative
non-linear system for various excitation
parameters.

Figure 6(b). A}m diagrams of the positive non-
linear system for various excitation parameters.
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solved numerically applying the Runge}Kutta method. The numerically obtained
solution y

1N
is compared with the analytical solution (71) y

1A
. It can be seen that

the analytical solution is an averaged value of the real numerical solution. The
motion of the system is stabilized with the linear absorber.

The amplitude-mass ratio diagrams for various values of excitation frequency
XK are plotted in Figure 6. The constants of the system are: e*"0)5, d"0)54,
a"0)21727. In Figure 6(a) c*

3
"1, and in Figure 6(b) c*

3
"!1. It can be concluded

that for the positive non-linearity the amplitude of vibrations has a tendency to
increase by increasing the mass ratio parameter: the larger the excitation parameter
XK the faster the increase. For the negative non-linearity the amplitude of vibrations
has a tendency to decrease with increase of the mass ratio parameter. The decrease
is faster for higher values of excitation parameter XK .

6. CONCLUSION

This paper analyses the parametrically excited vibrations in the strong non-linear
system. The following is concluded:

1. In the strong non-linear system where the excitation is periodical, the
vibrations are described with the second order non-linear di!erential equation
with variable parameters. For the case where the excitation is given with
a function which is of Jacobi elliptic type the vibrations can be determined by
applying the approximate analytical elliptic-Krylov}Bogolubov method. The
solution of the di!erential equation is bounded or unbounded depending on
the parameters of the system. The region of instability depends not only on the
amplitude of excitation h, the ratio between the frequency of the system and of
the excitation u* (as it is the case for linear systems), but also on the modulus
of the excitation force k2 and the initial amplitude A.

2. For some special excitation, the particular solution of vibration can be
obtained.
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3. The linear dynamic absorber which is attached to the strong non-linear
parameterically excited system can stabilize the motion and provide
periodical motion. The parameters of the mass-spring system are calculated.
They depend on the parameter of excitation and the parameters of the original
system.
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APPENDIX A

P
4K

0

b
i

sn2t
(1!k2 sn4t)

dt

"!C!4 cn3 h dn h sn3 h P
4K

0

(1!k2 sn4t)k4 sn6 t cn2 tdt

!4k2 cn h dn3 h sn3 h P
4K

0

(1!k2 sn4) sn6t dn2tdt

#4 cn h dn3 h sn5 h P
4K

0

(1#k2 sn4t) k4 sn8tdn2t dt

#4k2 sn3 h cn hdn h P
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0
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0
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4K

0
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0
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!4k6 sn7h cn3 h dn hP
4K

0

(1#k2 sn4t) k2 sn10t cn2t
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0
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4K

0

(1#k2 sn4t) k10 sn14tdn2t dt

!sn9 h cn h dn h k8P
4K

0

sn10t(1#k2 sn4t) cn2t dn2tdt

#sn13 hdn h cnh P
4K

0

(1#k2 sn4t) k12 sn14t cn2tdn2t dt

!cn3 hdn h sn11 h P
4K

0

(1#k2 sn4t) k12 sn14t cn2t dt

!cn7 hdn5 h sn h P
4K

0

(1#k2 sn4t) k4 sn8t cn2tdt

!k2 cn5 hdn7 h sn hP
4K

0

(1#k2 sn4t) sn8t dn2tdt

#cn5 hdn7 h sn3 h P
4K

0

(1#k2 sn4t) k4 sn10tdn2tdt

#sn h cn5 h dn5 hk2 P
4K

0

sn6t(1#k2 sn4t) cn2tdn2t dt

!sn5 h dn5 h cn5 hP
4K

0

(1#k2 sn4t) k6 sn10t cn2tdn2tdt

#cn7 hdn5 h sn3 h P
4K

0

(1#k2 sn4t) k6 sn10t cn2tdt

!6cn3 hdn h sn h P
4K

0

(1#k2 sn4t) k4 sn6t cn4t dt

!6k2 cnh dn3 h sn h P
4K

0

cn2t(1#k2 sn4t) sn6tdn2tdt

#6cn hdn3 h sn3 h P
4K

0

cn2t(1#k2 sn4t) k4 sn8 tdn2tdt

#6k2 sn h cn h dn hP
4K

sn2 t(1#k2 sn4t) cn4tdn2tdt

0



266 L. CVETICANIN
!6sn5 hdn h cn hP
4K

0

(1#k2 sn4t) k6 sn8t cn4tdn2tdt

#6cn3 hdn h sn3 h P
4K

0

(1#k2 sn4t) k6 sn8t cn4tdt

#cn5 hdn3 h sn3 h P
4K

0

dn2t(1#k2 sn4t) k2 sn4t cn2tdt

#cn3 hdn5 h sn3 h P
4K

0

(1#k2 sn4t) sn4tdn4t dt

!cn3 hdn5 h sn5 h P
4K

0

(1#k2 sn4t) k2 sn6tdn4t dt

!sn3 h cn3 h dn3 h P
4K

0

sn2t(1#k2 sn4t) cn2tdn4t dt

#sn7 h dn3 h cn3 h P
4K

0

(1#k2 sn4t) k4 sn6t cn2t dn4tdt

!cn5 hdn3 h sn5 h P
4K

0

dn2t(1#k2 sn4t) k4 sn6t cn2tdt

!cn3 hdn h sn h P
4K

0

(1#k2 sn4t) k2 sn4t cn2t dt

!cn h dn3 h sn h P
4K

0

(1#k2 sn4t) sn4tdn2t dt

#cn h dn3 h sn3 h P
4K

0

(1#k2 sn4t) k2 sn6t dn2tdt

#sn h cn h dn h P
4K

0

sn2t(1#k2 sn4t) cn2t dn2tdt

!sn5 h dn h cn h P
4K

0

(1#k2 sn4t) k4 sn6t cn2t d2t dt

#cn3 hdn h sn3 h P
4K

0

(1#k2 sn4t) k4 sn6t cn2tdtD



VIBRATIONS IN A PARAMETRICALLY EXCITED SYSTEM 267
#4k2 cn5 h dn5 h sn h P
4K

0

(1#k2 sn4t) sn6t cn2t dn2tdt

#4cn3 h dn5 h sn5 hP
4K

0

(1#k2 sn4t) k4 sn8t cn2tdn4tdt

!4cn5 h dn5 h sn5 h P
4K

0

(1#k2 sn4t) k6 sn10t cn2t dn2tdt

!4cn5 h dn3 h sn3 hP
4K

0

(1#k2 sn4t) k4 sn6t cn4t dn2tdt

#4cn5 h dn3 h sn5 hP
4K

0

(1#k2 sn4t) k6 sn8t cn4t dn2tdt

!4k2 cn3 h dn5 h sn3 h P
4K

0

(1#k2 sn4t) sn6t cn2t dn4tdt

#4k2cn3 hdn3 h sn3 h P
4K

0

(1#k2 sn4t) sn4t cn4 tdn4t dt

#4cn hdn5 h sn7 h P
4K

0

(1#k2 sn4t) k4 sn6t cn4tdn6t dt

!4cn3 h dn3 h sn7 hP
4K

0

(1#k2 sn4t) k6 sn8t cn4t dn4tdt

!4cn3 h dn h sn5 h P
4K

0

(1#k2 sn4t) k4 sn4t cn6t dn4tdt

#4cn3 h dn h sn7 h P
4K

0

(1#k2 sn4t) k6 sn6t cn6tdn4t dt

!4k2 cn h sn5 h dn3 h P
4K

0

(1#k2 sn4t) sn4t cn4tdn6t dt, (77)

P
4K

0

b
i
snt cn tdnt
(1!k2 sn4t)

dt

"cn2 h dn2 h P
4K

0

sn2t cn2tdn2t(1#k2 sn4 t) dt



268 L. CVETICANIN
#sn4 hdn2 hP
4K

0

k2 sn4t cn2tdn4t(1#k2 sn4t) dt

!k4 cn2 h dn2 h sn4 hP
4K

0

sn6t cn2 tdn2t(1#k2 sn4t) dt

!k2 sn2 h cn2 h P
4K

0

sn2t cn4 tdn2t(1#k2 sn4t) dt

#k4 sn4 h cn2 h P
4K

0

sn4t cn4 tdn2t(1#k2 sn4t) dt

!sn2 hdn2 hP
4K

0

sn2 t cn2 tdn4t(1#k2 sn4t) dt

#4k4 sn2 h cn2 h dn2 h P
4K

0

sn4t cn2t dn2t(1#k2 sn4t) dt

#4k4 sn6 hdn2 hP
4K

0

sn6t cn2t dn4t(1#k2 sn4t) dt

!4k6 sn6 h cn2 h dn2 h P
4K

0

sn8t cn2t dn2t(1#k2 sn4t) dt

!4k4 sn4 h cn2 h P
4K

0

sn4t cn2t dn2t(1#k2 sn4t) dt

#4k6 sn6 h cn2 h P
4K

0

sn6t cn4t dn2t(1#k2 sn4t) dt

!4k2 sn4 hdn2 hP
4K

0

sn4t cn2t dn4t(1#k2 sn4t) dt

!6k4 sn4 h cn2 h dn2 h P
4K

0

sn10t cn2tdn2 t(1#k2 sn4t) dt

!6k6 sn8 hdn2 hP
4K

0

sn8t cn2t dn4t(1#k2 sn4t) dt

#6k8 sn8 h cn2 h dn2 h P
4K

0

sn10t cn2tdn2 t(1#k2 sn4t) dt



VIBRATIONS IN A PARAMETRICALLY EXCITED SYSTEM 269
#6k6 sn6 h cn2 h P
4K

0

sn6t cn4t dn2t(1#k2 sn4t) dt

!6k8 sn8 h cn2 h P
4K

0

sn8t cn4t dn2t(1#k2 sn4t) dt

#6k4 sn6 hdn2 hP
4K

0

sn6t cn2t dn4t(1#k2 sn4t) dt

#4k4 cn6 h dn4 h sn2 h P
4K

0

(1#k2 sn4t) k2 sn6t cn4tdn2t dt

#4k2 cn4 h dn6 h sn2 h P
4K

0

(1#k2 sn4t) sn6tdn4 t cn2t dt

!4cn4 h dn6 h sn4 h P
4K

0

(1#k2 sn4 t) k4 sn8t cn2 tdn6t dt

!4k2 cn4 h dn4 h sn2 h P
4K

0

(1#k2 sn4t) sn4t cn4 tdn4t dt

#4k2 cn4 h dn4 h sn6 h P
4K

0

(1#k2 sn4t) k4 sn8t cn4tdn4t dt

!4k2 cn6 h dn4 h sn4 h P
4K

0

(1#k2 sn4t) k4 sn8t cn4tdn2t dt

#4k4 cn4 h dn2 h sn4 h (1#k2 sn4t) sn4t cn6t dn4tdt

#4k2 cn2 h dn4 h sn4 h (1#k2 sn4t) sn4t cn4t dn6tdt

!4k4 cn2 h dn4 h sn6 h P
4K

0

(1#k2 sn4t) sn6t cn4 tdn8t dt

!4k2 sn4 h cn2 h dn2 h P
4K

0

(1#k2 sn4t) sn2t cn6 tdn6t dt

#4cn2 h dn2 h sn8 h P
4K

0

(1#k2 sn4 t) k6 sn6t cn6 tdn6t dt

!4cn4 h dn2 h sn6 h P
4K

0

(1#k2 sn4 t) k6 sn6t cn6 tdn4t dt . (78)



270 L. CVETICANIN
Before the averaging it is very convenient to transform all the elliptic functions to
sinus elliptic function

cn2dn2"(1!sn2) (1!k2 sn2)"1!(k2#1) sn2#sn4k2.

sn2 cn2 dn2"sn2!(k2#1) sn4#sn6k2,
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Averaging the sinus elliptic functions according to Byrd [19] one gets
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